Issue 7, 2016

Three-dimensional light confinement in a PT-symmetric nanocavity

Abstract

Light confinement and manipulation in nanoscale have gained intense research attention due to their potential applications ranging from cavity quantum electrodynamics to nano-networks. Within all this research, the effective mode volume (Veff) is the key parameter that determines light–matter interaction. While various nano-cavities have been developed in past decades, very few have successfully confined light within the nanoscale in all three dimensions. Here we demonstrate a robust mechanism that can improve light confinement in nanostructures. By breaking the parity–time (PT) symmetry in nanowire based nanocavities, we find that the resonant modes are mostly localized at the interfaces between gain and loss regions, providing an additional way to confine light along a third direction. Taking a hybrid plasmonic Fabry–Perot cavity as an example, we show that the Veff has been dramatically improved from ∼0.0092 μm3 to ∼0.00169 μm3 after the breaking of PT symmetry. In addition to the perfect PT symmetric cavities with (n(r) = n(−r)*), we have also observed similar three-dimensional light confinements and an ultrasmall Veff in quasi-PT symmetric systems with fixed losses. We believe that our finding will significantly improve light–matter interaction in nanostructures and help the advance of their applications.

Graphical abstract: Three-dimensional light confinement in a PT-symmetric nanocavity

Article information

Article type
Communication
Submitted
21 Dec 2015
Accepted
29 Dec 2015
First published
06 Jan 2016

RSC Adv., 2016,6, 5792-5796

Author version available

Three-dimensional light confinement in a PT-symmetric nanocavity

W. Sun, Z. Gu, S. Xiao and Q. Song, RSC Adv., 2016, 6, 5792 DOI: 10.1039/C5RA27384F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements