A scaffold with a bio-mimetically designed micro/nano-fibrous structure using decellularized extracellular matrix†
Abstract
Decellularized extracellular matrix (d-ECM)-based scaffolds have been extensively applied in various tissue regeneration applications because they regulate various cell functions and effectively guide new tissue formation. However, fabrication methods using d-ECM have been limited by its low processability. In this study, a new fibrous scaffold consisting of poly(ε-caprolactone) (PCL) and d-ECM was fabricated using an electrohydrodynamic jet process to obtain a pore-controlled multi-layered structure. In the scaffold, the d-ECM was used as a supplementary bioactive component to induce highly active cell responses. The suggested PCL/ECM fibrous structure showed significantly higher tensility (tensile modulus: 2-fold) than a pure PCL fibrous structure with a similar pore structure. The in vitro cellular responses of the fibrous structure were increased using human fibroblasts, and the ECM-based scaffold showed significantly higher cell-seeding efficiency (1.8-fold) and metabolic activities (1.5-fold at seven days) than pure PCL with a similar pore size and porosity. These results suggest that the d-ECM-based scaffold is promising as a biomedical substrate to effectively regenerate tissues and that this fabrication method will be very useful for designing biomimetic biomedical scaffolds.