Efficient and selective green oxidation of alcohols by MOF-derived magnetic nanoparticles as a recoverable catalyst†
Abstract
A simple and highly efficient synthesis strategy for the green oxidation of alcohols to corresponding carbonyl products is developed using a heterogeneous non-noble magnetic Fe3O4@C catalyst. The magnetic nanocomposites were prepared by one-pot thermal decomposition of a Fe-containing MOF and fully characterized by powder X-ray diffraction (PXRD), N2 physical adsorption, atomic absorption spectroscopy (AAS), element analysis, scanning electronic microscopy (SEM), and transmission electron microscopy (TEM). The catalytic activities of Fe3O4@C materials were investigated in the selective oxidation of alcohols in neat water using hydrogen peroxide as a green oxidant under base-free conditions. Besides the high activity and selectivity to the target products, the proposed catalytic system features a broad substrate scope for both aryl and alkyl alcohols. Moreover, the magnetically catalyst could be easily separated by using an external magnetic field and reused for at least four times without significant loss in catalytic efficiency under the investigated conditions.