Issue 57, 2016, Issue in Progress

Electronic structure, low-temperature transport and thermodynamic properties of polymorphic β-As2Te3

Abstract

β-As2Te3 belongs to the prominent family of Bi2Te3-based materials, which show excellent thermoelectric properties near room temperature. In this study, we report a joint theoretical and experimental investigation of its electronic and thermal properties at low temperatures (5–300 K). These results are complemented by specific heat measurements (1.8–300 K) that provide further experimental evidence of the first order lattice distortion undergone by β-As2Te3 near 190 K. Data taken on cooling and heating across this transition show that the lattice distortion has little influence on the electronic properties and further evidence a weak hysteretic behavior. Although first-principles calculations predict a semiconducting ground state, these measurements show that β-As2Te3 behaves as a degenerate p-type semiconductor with a high carrier concentration of 1020 cm−3 at 300 K likely due to intrinsic defects. Calculations of the vibrational properties indicate that the extremely low lattice thermal conductivity values (0.8 W m−1 K−1 at 300 K) mainly originate from low-energy Te optical modes that limit the energy window of the acoustic branches. This limited ability to transport heat combined with a relatively large band gap suggest that high thermoelectric efficiency could be achieved in this compound when appropriately doped.

Graphical abstract: Electronic structure, low-temperature transport and thermodynamic properties of polymorphic β-As2Te3

Supplementary files

Article information

Article type
Paper
Submitted
20 Jan 2016
Accepted
20 May 2016
First published
23 May 2016

RSC Adv., 2016,6, 52048-52057

Electronic structure, low-temperature transport and thermodynamic properties of polymorphic β-As2Te3

J.-B. Vaney, J.-C. Crivello, C. Morin, G. Delaizir, J. Carreaud, A. Piarristeguy, J. Monnier, E. Alleno, A. Pradel, E. B. Lopes, A. P. Gonçalves, A. Dauscher, C. Candolfi and B. Lenoir, RSC Adv., 2016, 6, 52048 DOI: 10.1039/C6RA01770C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements