Issue 24, 2016

Solvent desulfurization regeneration process and analysis of activated carbon for low-sulfur real diesel

Abstract

The adsorption desulfurization process of diesel fuel is suffering from adsorbent regeneration limitation. Adsorption performance of activated carbon (AC) for S-compounds and hydrocarbons in low-sulfur real diesel was investigated by an adsorption fixed bed. The exhausted AC was regenerated by different solvents, including n-octane, ethanol and cyclohexane. AC samples were characterized using N2 adsorption–desorption isotherm at 77 K, TG and FT-IR. S-species and hydrocarbons-species in real diesel and the regeneration solutions were analyzed by gas chromatography-sulfur chemiluminescence detection (GC-SCD), gas chromatography-mass spectrometry (GC-MS) and gas chromatography (GC). The effects of hydrocarbons on desorption performance of S-compounds and extraction capability of n-octane were investigated. The effect of n-octane as a recycled regeneration solvent on the regeneration stability of AC in this work was also considered. The S-content in diesel was reduced to less than 10 ppm from an initial S-content of 34.83 ppm. The competitive adsorption between polycyclic aromatic hydrocarbons (PAHs) and S-compounds was the largest in hydrocarbons. The regeneration performance of different solvents for AC decreased as follows: n-octane > ethanol > cyclohexane. The regeneration efficiency of AC was 100% after a first adsorption–desorption cycle, and was held near 73% after 50 cycles using fresh n-octane as a regenerating solvent. The regeneration efficiency of AC can be maintained at 45% after 20 cycles using n-octane as a recycled regeneration solvent. According to the results of characterizations and tests, we found that multilayer adsorption of S-compounds and PAHs occurred in the mesopores of AC, while the aggregation phenomenon of small alkane molecules mainly existed in the micropores.

Graphical abstract: Solvent desulfurization regeneration process and analysis of activated carbon for low-sulfur real diesel

Article information

Article type
Paper
Submitted
21 Jan 2016
Accepted
01 Feb 2016
First published
02 Feb 2016

RSC Adv., 2016,6, 20258-20268

Solvent desulfurization regeneration process and analysis of activated carbon for low-sulfur real diesel

W. Li, J. Chen, G. Cong, L. Tang, Q. Cui and H. Wang, RSC Adv., 2016, 6, 20258 DOI: 10.1039/C6RA01881E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements