Issue 39, 2016, Issue in Progress

Novel organotin complexes derived from 2,2′-selenodiacetic acid: synthesis and biological evaluation

Abstract

The reactions of 2,2′-selenodiacetic acid and the corresponding organotin(IV) chloride with sodium ethoxide in ethanol, or via a solvothermal synthetic route, have afforded four organotin polymers, namely, [(Me3Sn)2Se(CH2COO)2]n (1), [(Me2Sn)2Se(CH2COO)23-O)]n (2), [(Bu3Sn)2Se(CH2COO)2]n (3), and [(Bu2Sn)Se(CH2COO)2]n (4). All the complexes were fully characterized by elemental analysis, FT-IR, NMR (1H, 13C, and 119Sn) spectroscopy and single crystal X-ray diffraction analysis. The structural analysis reveals that complex 1 is a 2D-polymer containing interconnected 24-membered (Sn4O8C10Se2) macrocyclic rings. Unlike complex 1, the 2D polymer structure of complex 2 is made up of the typical ladder tetraorganodistannoxane unit containing 32-membered (Sn4O8C16Se4) macrocyclic rings. Complex 3 is a 3D corrugated polymeric structure in which the deprotonated dicarboxylic acid acts as a tetradentate ligand by four oxygen atoms. Complex 4 is a 1D zigzag coordination polymer and the tin coordination geometry is described as skewed-trapezoidal bipyramidal. In particular, preliminary cytotoxic assessments of the involvement of complex 4 in the apoptotic death of MDA cells were conducted, and the results revealed that the antiproliferative and proapoptotic effect of complex 4 in MDA cells prominently contributed to the overload of intracellular ROS levels and the dysfunctional depolarization of mitochondrial membranes.

Graphical abstract: Novel organotin complexes derived from 2,2′-selenodiacetic acid: synthesis and biological evaluation

Supplementary files

Article information

Article type
Paper
Submitted
22 Jan 2016
Accepted
09 Mar 2016
First published
11 Mar 2016

RSC Adv., 2016,6, 32484-32492

Novel organotin complexes derived from 2,2′-selenodiacetic acid: synthesis and biological evaluation

Q. Li, X. Liu, S. Cheng, R. Zhang, Y. Shi and C. Ma, RSC Adv., 2016, 6, 32484 DOI: 10.1039/C6RA01948J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements