Issue 33, 2016

Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study

Abstract

The present study was designed to evaluate five green solvents, i.e. 2-methyltetrahydrofuran (2-MeTHF), dimethyl carbonate (DMC), cyclopentyl methyl ether (CPME), isopropyl alcohol (IPA) and ethyl acetate, for the substitution of n-hexane in the extraction of carotenoids from carrots. Initially, solvent selection was made through the theoretical physicochemical solvent properties and solubility results obtained using two simulation programs, Hansen Solubility Parameters (HSPs) and Conductor-like Screening Model for Realistic Solvation (COSMO-RS) which use a statistical thermodynamics approach based on the result of quantum chemical calculation, for comprehension of the dissolving mechanism. On the basis of the HSPs analysis, non-polar or slightly polar solvents were the most suitable solvents for extraction of carotenoids. COSMO-RS analysis showed a higher probability of solubility for all the carotenoids from carrot in CPME, 2-MeTHF and ethyl acetate compared with n-hexane. The experimental results using a conventional solid–liquid extraction by maceration showed that the best green solvents were CPME, 2-MeTHF and ethyl acetate in accordance with the predictive results from COSMO-RS. The highest carotenoid content (78.4 mg 100 g−1 DM) was observed in CPME where 66% was represented by β-carotene and 34% was α-carotene. These results support the potential of CPME and 2-MeTHF as alternative green solvents for extraction of carotenoids.

Graphical abstract: Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study

Article information

Article type
Paper
Submitted
01 Feb 2016
Accepted
09 Mar 2016
First published
11 Mar 2016

RSC Adv., 2016,6, 27750-27759

Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study

E. Yara-Varón, A. S. Fabiano-Tixier, M. Balcells, R. Canela-Garayoa, A. Bily and F. Chemat, RSC Adv., 2016, 6, 27750 DOI: 10.1039/C6RA03016E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements