Relaxation and magnetocaloric effect in the Mn12 molecular nanomagnet incorporated into mesoporous silica: a comparative study
Abstract
This paper presents the synthesis and investigation of the magnetic properties of mesoporous silica SBA-15 functionalized with Mn12 ([Mn12O12(CH3COO)16(H2O)4]·2CH3COOH·4H2O) high-spin molecular clusters. The SBA-Mn12 sample has been examined by means of X-ray diffraction, infrared spectroscopy, nitrogen sorption and TEM techniques. AC and DC magnetic measurements, including measurements of the magnetocaloric effect (MCE) were carried out both for SBA-Mn12 and for polycrystalline Mn12. An increase in the activation energy and in the distribution of relaxation times was observed for SBA-Mn12 as compared to those of Mn12. Differences in the MCE were also revealed. The maximum magnetic entropy change at the field change of 50 kOe for SBA-Mn12 is equal to 13.8 J K−1 mol−1 at T = 2.8 K, which is significantly less than 25.3 J K−1 mol−1 observed for Mn12 at 3.2 K. The altered relaxation and the magnetocaloric effect point to a successful incorporation of Mn12 molecules into the silica channels.