Issue 51, 2016

In situ generated nickel on cerium oxide nanoparticle for efficient catalytic reduction of 4-nitrophenol

Abstract

Efficient and economic catalysts are required for the large scale degradation of hazardous pollutants. In the present work, two nickel (5 wt%) based compounds, Ni(NO3)2 and NiO, immobilized over a CeO2 surface were tested for the reduction of 4-nitrophenol. Size, structural and surface properties of the catalyst were characterized by XRD, SEM & TEM – EDX, FTIR and Raman spectroscopy. UV-visible spectroscopic results indicated the better catalytic performance of the Ni(NO3)2 support than that of NiO supported CeO2. The reduction rate of 4-nitrophenol in the presence of the Ni(NO3)2 support was found to be 12 times faster than that of NiO supported CeO2. The time-dependent Raman spectroscopic investigation demonstrated that the performance of Ni(NO3)2 supported CeO2 arises from the in situ generation of nickel in the presence of an excess of sodium borohydride in the reduction of 4-nitrophenol. Further, the reversible conversion of nickel to nickel nitrate enabled the recyclability of the Ni(NO3)2 supported CeO2. The formation of nickel was found to be important for the reduction of 4-nitrophenol as NiO supported CeO2 did not form nickel thereby exhibiting poor catalytic activity. Thus, the present work showcases the in situ generation of nickel as a novel strategy for the catalytic reduction of 4-nitrophenol.

Graphical abstract: In situ generated nickel on cerium oxide nanoparticle for efficient catalytic reduction of 4-nitrophenol

Supplementary files

Article information

Article type
Paper
Submitted
15 Feb 2016
Accepted
02 May 2016
First published
03 May 2016

RSC Adv., 2016,6, 45947-45956

In situ generated nickel on cerium oxide nanoparticle for efficient catalytic reduction of 4-nitrophenol

S. Vivek, P. Arunkumar and K. S. Babu, RSC Adv., 2016, 6, 45947 DOI: 10.1039/C6RA04120E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements