Ammonia-oxidizing bacterial communities and shaping factors with different Phanerochaete chrysosporium inoculation regimes during agricultural waste composting
Abstract
This research was conducted to determine the effects of Phanerochaete chrysosporium inoculation on the ammonia-oxidizing bacterial (AOB) communities during agricultural waste composting. AOB communities with different inoculation regimes were investigated by quantitative PCR and denaturing gradient gel electrophoresis. Results showed that P. chrysosporium inoculation imposed certain stimulatory effects on the AOB amoA gene abundance. Samples with different inoculation regimes were dominated by different AOB species. Linear regression analysis indicated that the AOB community abundance had a significant positive correlation with pile pH (P < 0.05). The AOB amoA gene structure was best related to water soluble carbon (WSC) (P = 0.002, F = 14.17) and pile temperature (P = 0.04, F = 2.72). Variance partition analysis suggested that the sample property heterogeneity induced by inoculation imposed a greater impact (42.9%, P = 0.006) on the bacterial amoA gene structure than different inoculation regimes (23.6%, P = 0.022).