Issue 56, 2016

n-Type phosphorus-doped nanocrystalline diamond: electrochemical and in situ Raman spectroelectrochemical study

Abstract

Electrochemical and in situ Raman spectroelectrochemical characterization of n-type phosphorus-doped nanocrystalline diamond (P-NCD) is carried out. The P-NCD films are grown by microwave plasma enhanced chemical vapour deposition and doped with phosphorus at a concentration of 10 000 ppm in the gas phase. Micro-Raman spectroscopy determines the film quality (presence of graphitic or amorphous phases). All electrochemical measurements are performed in aqueous 0.5 M H2SO4 electrolyte solution. Electrochemical impedance spectroscopy (EIS) confirms the n-type conduction of a P-NCD electrode and from the Mott–Schottky plot the donor concentration (ND) of 1.8 × 1018 cm−3 is determined. The in situ Raman spectroelectrochemistry is performed in the potential range from −1.5 to 1.5 V vs. Ag/AgCl using two laser excitations (633 nm and 488 nm). In the case of the as-prepared P-NCD film, the Raman modes belonging to non-diamond (sp2) impurities change their intensities during applied potentials. The intensity of such Raman peaks increases at cathodic potentials, while at anodic potentials they disappear. On the other hand, the intensity and position of the sp3 diamond peak (1334 cm−1) exhibit no spectroelectrochemical changes and the same holds for the photoluminescence peak (at 1.68 eV) assigned to Si-impurities. After several cyclic voltammetry (CV) scans, the electrochemical potential window of a P-NCD electrode increases. This is due to the “electrochemical burning” of impurities at large anodic potentials, which is also confirmed by in situ Raman spectroelectrochemistry. Angle-resolved XPS confirms partial electrochemical oxidation of P-NCD in thin surface layers.

Graphical abstract: n-Type phosphorus-doped nanocrystalline diamond: electrochemical and in situ Raman spectroelectrochemical study

Supplementary files

Article information

Article type
Paper
Submitted
27 Feb 2016
Accepted
17 May 2016
First published
18 May 2016

RSC Adv., 2016,6, 51387-51393

n-Type phosphorus-doped nanocrystalline diamond: electrochemical and in situ Raman spectroelectrochemical study

Z. Vlčková Živcová, O. Frank, S. Drijkoningen, K. Haenen, V. Mortet and L. Kavan, RSC Adv., 2016, 6, 51387 DOI: 10.1039/C6RA05217G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements