Microfluidic-based biomimetic models for life science research
Abstract
The advances in microfluidic technology have recently generated various microfluidic-based biomimetic models as novel three-dimensional (3D) models for life science research, offering some great advantages over conventional two-dimensional (2D) models, classical scaffold-free or scaffold-based 3D approaches and animal models. These biomimetic models could simulate the microenvironment of in vivo tissues and organs by controlling spatiotemporal gradients of chemical substances and imitating mechanical activities of living tissues and organs. They provide platforms for real-time observation of physiological and pathological processes, toxicology effect and drug effects in tissues and organs for life science research. Without a doubt, microfluidic-based biomimetic models would serve as a powerful tool for developing diagnosis and treatment methods for various diseases. In this study, we briefly summarized the fabrication of microfluidic-based biomimetic models and their use as 3D tissue/organ models.