Issue 67, 2016, Issue in Progress

Mesoporous silica coated Gd2(CO3)3:Eu hollow nanospheres for simultaneous cell imaging and drug delivery

Abstract

In the present work, mesoporous silica coated Gd2(CO3)3:Eu hollow nanospheres (Gd2(CO3)3:Eu@mSiO2 HNSs) were successfully synthesized via a facial route and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) infrared spectrometer (IR), energy dispersive X-ray spectrum (EDS) and Brunauer–Emmet–Teller (BET) surface area analysis. The results indicate that the prepared monodispersed nanoparticles are hollow spheres with a 400 nm sphere core and 30 nm thick shell and have a narrow size distribution. In vitro cell imaging of the hollow nanosphere shows Gd2(CO3)3:Eu@mSiO2 HNSs were able to enter NCI-H460 lung cancer cells rapidly. The possibility of using the synthesized hollow nanospheres for magnetic resonance imaging was also demonstrated, and the hollow nanosphere displays a clear T1-weighted effect and could potentially serve as a bimodal T1-positive contrast agent. The drug loading and controlled release performance of Gd2(CO3)3:Eu@mSiO2 HNSs was evaluated with doxorubicin hydrochloride (DOX) as a model drug at different pH values (pH = 7.4, 5.8). The Gd2(CO3)3:Eu@mSiO2 HNSs showed sustainable pH dependent drug release property. Furthermore, the in vitro cytotoxic effect against NCI-H460 lung cancer cells of the DOX-loaded carriers was investigated in detail. In all, the Gd2(CO3)3:Eu@mSiO2 HNSs as a new type of theragnostic (imaging and treatment) agent can provide new opportunities in cancer treatment.

Graphical abstract: Mesoporous silica coated Gd2(CO3)3:Eu hollow nanospheres for simultaneous cell imaging and drug delivery

Supplementary files

Article information

Article type
Paper
Submitted
22 Mar 2016
Accepted
21 Jun 2016
First published
22 Jun 2016

RSC Adv., 2016,6, 62320-62326

Author version available

Mesoporous silica coated Gd2(CO3)3:Eu hollow nanospheres for simultaneous cell imaging and drug delivery

Y. Wu, X. Xu, X. Chen, R. Yang, Q. Xiao and Y. Li, RSC Adv., 2016, 6, 62320 DOI: 10.1039/C6RA07444H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements