Highly repeatable kinetically-independent synthesis of one- and two-dimensional silver nanostructures by oriented attachment
Abstract
A repeatable and fast synthesis of one- and two-dimensional silver nanostructures with thickness of 20–25 nm, constructed from highly stable hexagonal and triangular nanoplates has been achieved. Various useful morphologies can be constructed on the gram-scale from the reduction of aqueous solutions of silver nitrate by L-ascorbic (L-ASB) acid in the presence of poly(methacrylic)acid sodium salt, within a few minutes by simple room temperature mixing. Contrary to the literature, the assembly mechanisms governing the final morphology are not kinetically controlled, and are instead selective based on concentration of the reaction mixture. These diverse silver nanostructures meet the criteria desired for feasible industrial production and incorporation into nanoscale devices.