Studies on the magnetoelastic and magnetocaloric properties of Yb1−xMgxMnO3 using neutron diffraction and magnetization measurements
Abstract
We report the magnetic ordering and magnetoelastic coupling of polycrystalline hexagonal Yb1−xMgxMnO3 (x = 0.00 and 0.05) compounds by using neutron diffraction measurements. The magnetocaloric properties of these Yb1−xMgxMnO3 compounds are also studied using magnetization measurements. The temperature dependence of the lattice parameters (a and c/a ratio) and unit cell volume V show anomalous behavior near TN1 ∼ 85 K (the Mn ordering temperature) due to the magnetoelastic effect. Also all the Mn–O bond distances display considerable variation at TN1. Isothermal magnetization curves measured near the Yb long range ordering temperatures indicate a field induced magnetic transition with applied field. The isothermal magnetic entropy change (−ΔSM) is calculated from the magnetization curves measured for different temperatures. Values of maximum entropy change (−ΔSmaxM), the adiabatic temperature change (ΔTad) and the relative cooling power (RCP) for these compounds are found to be 3.02 ± 0.37 J mol−1 K−1, 8.6 ± 0.95 K and 41 ± 9 J mol−1 for x = 0.00, and 2.63 ± 0.36 J mol−1 K−1, 9.06 ± 0.96 K and 40.0 ± 10 J mol−1 for x = 0.05, respectively, for ΔH = 100 kOe. Rescaling of the −ΔSM vs. T curves for various fields fit into a single curve, implying the second-order phase transition.