pH-Responsive nano sensing valve with self-monitoring state property based on hydrophobicity switching†
Abstract
Nano valves have been used in functional porous materials to control molecular transport by changing their properties in response to external stimuli. But most of them are limited by the blocking units and cannot show their state by themselves. Herein, pH switchable nano valves were constructed using mesoporous inverse opal photonic crystal, which realized free-blockage nano valves and achieved the monitoring of the state of the valve by the naked eye without an external indicator. The nano valves were modified by phenylamine groups, which has a convertible hydrophobic/hydrophilic property between deprotonation and protonation. The valves were hydrophobic enough to prevent solution passing through at pH 7.0, and meanwhile a green color was presented. With the decrease of the pH value of the solution, the valves became open and presented a yellow to red color because of the protonation of phenylamine groups followed by the invasion of solution. Thus, in this study not only a free-blockage valve but also nano sensing valve was constructed. We believe that our studies provide new insights into photonic crystal sensors and nano sensing valve.