Issue 65, 2016, Issue in Progress

Branched triphenylamine-core compounds: aggregation induced two-photon absorption

Abstract

Three branched molecules (T1–T3) were synthesized through simple step to realize or enhance two-photon absorption (2PA) in aggregates. Spectra data show that one- and two-branched molecules (T1 and T2) possessed remarkable AIE properties, which came from the formation of J-aggregation because of their partial planarization in an aggregated state. SEM and DLS illustrate that the ordered aggregation and the small particle size had an important influence on fluorescence emission. Open aperture Z-scan experiments show that T1 and T2 possessed excellent 2PA properties in the aggregated state. The largest 2PA cross section was 8314 GM for T2 in aggregates, which was about 13-fold higher than that in pure solution. All the results demonstrate that the compounds could obtain outstanding 2PA performance by rationally adjusting their structure or changing state, which could provide a reference for preparing strong 2PA compounds.

Graphical abstract: Branched triphenylamine-core compounds: aggregation induced two-photon absorption

Supplementary files

Article information

Article type
Paper
Submitted
14 Apr 2016
Accepted
04 Jun 2016
First published
13 Jun 2016

RSC Adv., 2016,6, 60022-60028

Author version available

Branched triphenylamine-core compounds: aggregation induced two-photon absorption

X. Zhang, X. Gan, S. Yao, W. Zhu, J. Yu, Z. Wu, H. Zhou, Y. Tian and J. Wu, RSC Adv., 2016, 6, 60022 DOI: 10.1039/C6RA09701D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements