An in situ small-angle X-ray scattering study of the structural effects of temperature and draw ratio of the hot-drawing process on ultra-high molecular weight polyethylene fibers
Abstract
An in situ small-angle X-ray scattering (SAXS) study of the structural effects of temperature and draw ratio (DR1) of the hot-drawing process on ultra-high molecular weight polyethylene (UHMWPE) gel fibers was performed with equipment simulating the hot-drawing process on an industrial production line. The UHMWPE gel fibers were prepared from the industrial production line. The results show that the increase of hot-drawing temperature has a significant effect on the kebab but no obvious effect on shish length and misorientation. The increase of temperature is beneficial to the formation of the shish in a suitable temperature range of 124–130 °C, while the formation of the shish at higher temperature, 140 °C, needs higher DR1. Moreover, the increase of DR1 is beneficial to the formation of shish at all experimental hot-drawing temperatures, while the kebab formation mainly occurs at low DR1 and the kebab transformation mainly happens at high DR1. The shish length and misorientation decreases with the increase of DR1.