Nitrogen-rich energetic salts of 1H,1′H-5,5′-bistetrazole-1,1′-diolate: synthesis, characterization, and thermal behaviors†
Abstract
A series of nitrogen-rich heterocyclic 1H,1′H-5,5′-bistetrazole-1,1′-diolate salts, namely, 1,2,4-triazolium (2), 3-amino-1,2,4-triazolium (3), 4-amino-1,2,4-triazolium (4), 3,5-diamino-1,2,4-triazolium (5), 2-methylimidazolium (6), imidazolium (7), pyrazolium (8), 3-amino-5-hydroxypyrazolium (9), dicyandiamidine (10), and 2,4-diamino-6-methyl-1,3,5-triazin (11), was synthesized with cations. These energetic salts were fully characterized through FT-IR, 1H NMR, 13C NMR, and elemental analysis. The structures of 2, 3·7H2O, 6·2H2O, 8, and 10·4H2O were further confirmed through single crystal X-ray diffraction. Their thermal stabilities were investigated through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results indicated that all of the salts possess excellent thermal stabilities with decomposition temperatures ranging from 225.7 °C to 314.0 °C. On the basis of the Kamlet–Jacobs formula, we carefully calculated their detonation velocities and detonation pressures. All of the salts, except 11, exhibit promising detonation performances with a detonation pressure of 20.23–28.69 GPa and a detonation velocity of 7050–8218 m s−1. These values are much higher than those of TNT. The impact sensitivities of the compounds were determined via a Fall hammer test. All of the compounds show excellent impact sensitivities of >50 J, and this finding is higher than that of TATB (50 J). Therefore, these ionic salts with excellent energetic properties could be applied as new energetic materials.