Issue 64, 2016, Issue in Progress

Unimolecular micelles from graft copolymer with binary side chains

Abstract

A novel amphiphilic binary graft copolymer poly(glycidyl methacrylate)-graft-[poly(2-cinnamoyl-oxyethyl methacrylate)-random-methoxy polyethylene glycol] (PGMA-g-(PCEMA-r-MPEG)) was successfully synthesized by a combination of atom transfer radical polymerization (ATRP) and click reaction, in which alkyne-end-functionalized poly(2-cinnamoyloxyethyl methacrylate) (PCEMA–C[triple bond, length as m-dash]CH) and poly(ethylene glycol) methyl ether (MPEG–C[triple bond, length as m-dash]CH) were grafted onto a poly(3-azide-2-hydroxy-propyl methacrylate) (P(GMA-N3) backbone. This polymer was used to prepare stable unimolecular micelles (UMMs), which could be produced using either high or low polymer concentrations. Since water is a good solvent only for MPEG but a poor solvent for both PGMA and PCEMA, the hydrophobic PGMA and PCEMA segments aggregated together to form a dense core that was surrounded by a corona based on the soluble MPEG segments. PCEMA was photo-crosslinkable, and thus the UMMs could be crosslinked by shining UV light on the system to yield permanent UMMs. The morphologies of the UMMs were characterized by TEM, AFM, and DLS. Both the TEM and AFM observations indicated that the crosslinked UMMs had a diameter of ∼13 nm, while the DLS measurements indicated they had a diameter of ∼34 nm. The unimolecular state of the micelles was confirmed by SEC, as well as a comparison of the theoretical mass per graft copolymer molecule with that of an individual micelle. Moreover, the morphology of the UMMs was unperturbed by the crosslinking reaction although they became more compact and had a slightly smaller diameter.

Graphical abstract: Unimolecular micelles from graft copolymer with binary side chains

Article information

Article type
Paper
Submitted
27 Apr 2016
Accepted
06 Jun 2016
First published
08 Jun 2016

RSC Adv., 2016,6, 58871-58883

Unimolecular micelles from graft copolymer with binary side chains

Y. Mo, S. Lin, Y. Tu, G. Liu, J. Hu, F. Liu and J. Song, RSC Adv., 2016, 6, 58871 DOI: 10.1039/C6RA10822A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements