Issue 67, 2016

Enhancement of thermoelectric properties by effective K-doping and nano precipitation in quaternary compounds of (Pb1−xKxTe)0.70(PbSe)0.25(PbS)0.05

Abstract

We investigated thermoelectric properties in K-doped quaternary compounds of (Pb1−xKxTe)0.70(PbSe)0.25(PbS)0.05 (x ≤ 0.03). In terms of two valence bands model, we argue that the L-band approaches to the Σ-band with increasing the K-doping concentration resulting in the increase of carrier concentration and effective mass of carrier due to the increase of band degeneracy. The effective K-doping by x = 0.02 and PbS substitution causes high power factor and low thermal conductivity, resulting in the comparatively high ZT value of 1.72 at 800 K. The low thermal conductivity for (Pb0.98K0.02Te)0.70(PbSe)0.25(PbS)0.05 compound is attributed from the lattice distortion and line dislocation in a phase of nano precipitation. By optimizing K-doping and PbS substitution, we achieved the enhancement of practical thermoelectric performance such as average ZTavg = 1.08, engineering (ZT)eng = 0.81, maximum efficiency ηmax = 11.63%, and output power density Pd = 6.3 W cm−2, with temperature difference ΔT = 500 K, which has practical applicability in waste heat power generation technologies.

Graphical abstract: Enhancement of thermoelectric properties by effective K-doping and nano precipitation in quaternary compounds of (Pb1−xKxTe)0.70(PbSe)0.25(PbS)0.05

Supplementary files

Article information

Article type
Paper
Submitted
02 May 2016
Accepted
23 Jun 2016
First published
24 Jun 2016

RSC Adv., 2016,6, 62958-62967

Enhancement of thermoelectric properties by effective K-doping and nano precipitation in quaternary compounds of (Pb1−xKxTe)0.70(PbSe)0.25(PbS)0.05

D. Ginting, C. Lin, L. Rathnam, B. Yu, S. Kim, R. Al rahal Al Orabi and J. Rhyee, RSC Adv., 2016, 6, 62958 DOI: 10.1039/C6RA11299D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements