Facile synthesis of hollow carbon microspheres embedded with molybdenum carbide nanoparticles as an efficient electrocatalyst for hydrogen generation†
Abstract
In an attempt to exploit efficient and stable non-precious-metal electrocatalysts for hydrogen production from water electrolysis in both acid and basic solution, hollow carbon microspheres embedded with molybdenum carbide nanoparticles are prepared via ultrasonic spray pyrolysis. The as-synthesized catalyst exhibits superior activity in hydrogen evolution reaction (HER) with a small overpotential of 203 mV in acidic solution and 346 mV in basic solution to reach a current density of 20 mA cm−2. The enhanced electrochemical activity should be ascribed to the effects of the anchored structure. The catalyst can work stably in both acidic and basic solution with 100% faradaic efficiency. These excellent properties make the catalyst a promising electrocatalyst in the HER.