Issue 105, 2016

Phase segregation in hydroxyfluorapatite solid solution at high temperatures studied by combined XRD/solid state NMR

Abstract

Fluoride substituted apatite is a key player among currently existing biomaterials. The 19F MAS-NMR is perhaps the most and only reliable technique to detect fluoride substitution in apatite. Typically any 19F MAS-NMR signal between −101.0 and −107.0 ppm is often used to identify fluoride substitution in apatite. Until now no explanation has been given as to why there is such a large variation in the NMR signals of these crystalline species. In this study, for the first time, we were able to explain this large variation in the 19F chemical shift values often seen in the literature. Hydroxyfluorapatites (FHA) with varied fluoride substitution and free from other substitutions have been synthesized via solution route followed by heat treatment in air at different temperatures up to 900 °C. Solid-state nuclear magnetic resonance (19F and 31P MAS-NMR) and X-ray diffraction (XRD) were used to characterize the synthesized powder samples. Formation of solid solution with varied hydroxyl/fluoride ratio was observed after the heat treatment up to a temperature of 300 °C. FHA samples decomposed to β-tricalcium phosphate (β-TCP) at higher temperature, which started from 20% F sample at 750 °C. With increasing F%, the FHA became more thermally stable and 80% F sample did not show β-TCP until 900 °C. An empirical nonlinear correlation between 19F NMR chemical shift and relative F% had been established. The mechanism of FHA solid solution formation and its thermal instability is proposed.

Graphical abstract: Phase segregation in hydroxyfluorapatite solid solution at high temperatures studied by combined XRD/solid state NMR

Supplementary files

Article information

Article type
Paper
Submitted
04 Jul 2016
Accepted
21 Oct 2016
First published
01 Nov 2016

RSC Adv., 2016,6, 103782-103790

Author version available

Phase segregation in hydroxyfluorapatite solid solution at high temperatures studied by combined XRD/solid state NMR

Y. Gao, N. Karpukhina and Robert V. Law, RSC Adv., 2016, 6, 103782 DOI: 10.1039/C6RA17161C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements