Issue 86, 2016

New strategy for magnetic gas sensing

Abstract

A new-concept approach to room temperature magnetic gas sensing has been developed, based on newly designed Co/ZnO hybrid nanostructures. The sensor prototype has been demonstrated to be sensitive, reversible, fast and scalable. In this work, the role of the Co/ZnO surface and interface in the gas-sensing mechanism has been clarified. In order to attain a comprehensive understanding of the physics governing the remarkable properties of the Co/ZnO stack, an extensive electronic and structural investigation has been carried out. The reaction at room temperature with target gases involves the surface and the lateral faces of the ZnO nanorods, with the formation of structural defects and vacancies. In particular, it has been discovered that the stress enhancement as well as the change in the polarizability of the ZnO nanorods are transduced by Co in a change of its magnetization. The interplay between these phenomena may provide versatile approaches to tune the intrinsic electronic, magnetic and optical properties of the hybrid nanostructure.

Graphical abstract: New strategy for magnetic gas sensing

Article information

Article type
Paper
Submitted
17 Jul 2016
Accepted
28 Aug 2016
First published
29 Aug 2016

RSC Adv., 2016,6, 83399-83405

New strategy for magnetic gas sensing

R. Ciprian, P. Torelli, A. Giglia, B. Gobaut, B. Ressel, G. Vinai, M. Stupar, A. Caretta, G. De Ninno, T. Pincelli, B. Casarin, G. Adhikary, G. Sberveglieri, C. Baratto and M. Malvestuto, RSC Adv., 2016, 6, 83399 DOI: 10.1039/C6RA18213E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements