Development of low-temperature desulfurization performance of a MnO2/AC composite for a combined SO2 trap for diesel exhaust
Abstract
Growing concern about the removal of sulfur dioxide (SO2) from combustion exhaust has resulted in the development of desulfurization materials for a SO2 trap. In this study, a manganese dioxide/activated carbon (MnO2/AC) composite was proposed as a low temperature desulfurization material for a combined SO2 trap. The MnO2/AC composite was synthesized using a redox deposition method and characterized using scanning electron microscopy (SEM), nitrogen adsorption, X-ray fluorescence spectrometry (XRF) and Fourier transform infrared (FTIR) spectroscopy. The SO2 adsorption capacity of the composites was measured using thermogravimetry and the SO2 adsorption characteristics were also investigated. In the low temperature region (50–200 °C), the MnO2/AC composite exhibits good SO2 trap performance and the MnO2 conversion of the composite is significantly improved. It was found that the SO2 adsorption on the MnO2/AC composite is a chemisorption process. The experimental data for SO2 adsorption on the MnO2/AC composite could fit the Freundlich model well. Changes in the thermodynamic parameters were determined. The calculated values of ΔG0 and ΔH0 indicate that the SO2 adsorption on the MnO2/AC composite is spontaneous and thermodynamically favorable.