Issue 96, 2016, Issue in Progress

Fabrication of flexible silicon nanowires by self-assembled metal assisted chemical etching for surface enhanced Raman spectroscopy

Abstract

A homogenous array of flexible gold coated silicon nanowires was fabricated by the combination of nano spheres lithography and metal assisted chemical etching to obtain highly effective Surface Enhanced Raman Spectroscopy (SERS) substrates. 3D nanostructures with different aspect ratios and well-defined geometries were produced by adjusting the fabrication parameters in order to select the best configuration for SERS analysis. The optimum flexible nanowires with an aspect ratio of 1 : 10 can self-close driven by the microcapillary force under exposure to liquid and trap the molecules at their metallic coated “fingertips”, thus generating hot spots with ultrahigh field enhancement. The performance of these SERS substrates was evaluated using melamine as the analyte probe with various concentrations from the millimolar to the picomolar range. Flexible gold coated SiNWs demonstrated high uniformity of the Raman signal over large area with a variability of only 10% and high sensitivity with a limit of detection of 3.20 × 10−7 mg L−1 (picomolar) which promotes its application in several fields such food safety, diagnostic and pharmaceutical. Such an approach represents a low-cost alternative to the traditional nanofabrication processes to obtain well ordered silicon nanostructures, offering multiple degrees of freedom in the design of different geometries such as inter-wire distance, density of the wires on the surface as well as their length, thus showing a great potential for the fabrication of SERS substrates.

Graphical abstract: Fabrication of flexible silicon nanowires by self-assembled metal assisted chemical etching for surface enhanced Raman spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
11 Aug 2016
Accepted
26 Sep 2016
First published
26 Sep 2016

RSC Adv., 2016,6, 93649-93659

Fabrication of flexible silicon nanowires by self-assembled metal assisted chemical etching for surface enhanced Raman spectroscopy

S. A. Kara, A. Keffous, A. M. Giovannozzi, A. M. Rossi, E. Cara, L. D'Ortenzi, K. Sparnacci, L. Boarino, N. Gabouze and S. Soukane, RSC Adv., 2016, 6, 93649 DOI: 10.1039/C6RA20323J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements