Issue 107, 2016, Issue in Progress

Novel super-toughened bio-based blend from polycarbonate and poly(lactic acid) for durable applications

Abstract

High-performance bio-based polycarbonate (PC) and poly(lactic acid) (PLA) blends are created using poly(ethylene-n-butylene-acrylate-co-glycidyl methacrylate) (EBA-GMA) as a reactive compatibilizer and impact modifier, with the aid of an epoxy-based chain extender (CE). It is found that the use of a specific acrylic impact modifier and a high blending temperature are the major factors in reaching high toughness and superior heat resistance. Toughened blends containing 32 wt% of biosourced PLA showed impact strength and heat resistance comparable to that of neat PC, while exceeding the mechanical properties of PC. Atomic force microscopy (AFM) studies have shown that an EBA-GMA phase was concentrated exclusively within a brittle PLA phase, ensuring high-efficiency impact-strength modification with a relatively small amount of modifier. As little as 6 wt% of EBA-GMA in a PC/PLA blend was enough to increase the toughness by more than 10 times. It is found that PLA and PC phases form a co-continuous morphology in the blend, allowing it to reach a high heat resistance that is almost unaffected by an impact modifier content of up to 10 wt%. It is shown that targeted toughening of the brittle PLA phase allows the achievement of excellent mechanical properties due to a lower required acrylic rubber content. A significant bio-based content in the PC/PLA blend allows increased sustainability of manufacturing and opens possibilities for use in a wide range of industrial applications.

Graphical abstract: Novel super-toughened bio-based blend from polycarbonate and poly(lactic acid) for durable applications

Article information

Article type
Paper
Submitted
23 Aug 2016
Accepted
21 Oct 2016
First published
21 Oct 2016

RSC Adv., 2016,6, 105094-105104

Novel super-toughened bio-based blend from polycarbonate and poly(lactic acid) for durable applications

Y. Yuryev, A. K. Mohanty and M. Misra, RSC Adv., 2016, 6, 105094 DOI: 10.1039/C6RA21208E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements