The reaction mechanism for highly effective hydrodechlorination of p-chlorophenol over a Pd/CNTs catalyst†
Abstract
Carbon nanotubes (CNTs) supported Pd catalysts (1 wt% and 5 wt%) were prepared by a conventional impregnation method and tested in liquid-phase hydrodechlorination (HDC) of para-chlorophenol (p-CP) under mild conditions (313 K and atmospheric pressure) with H2. CNTs as a catalyst support offered better performance than activated carbon (AC). The conversion of p-CP reached 72% and 82% over 5 wt% Pd/AC and 5 wt% Pd/CNTs, respectively, within 30 min. When the content of Pd was reduced to 1 wt%, the conversion of p-CP over Pd/AC and Pd/CNTs was 55% and 83%, respectively. The mechanism of this phenomenon was studied through catalyst characterization (XRD, TEM, and BET). The abovementioned results indicated that the different activities of the catalysts over different supports mainly resulted from the porous structure of the supports and nanoparticle diameters of the active metal.