Issue 108, 2016

One-step molten salt carbonization (MSC) of firwood biomass for capacitive carbon

Abstract

Capacitive carbons are prepared by a molten salt carbonization (MSC) process from Chinese firwood biomass, and the effect of the biomass size (lengths ranging from 0.09 to 2 cm) on the carbon yield and the electrochemical capacitive performance of the carbonized samples is investigated. The mechanism of carbon treatment and structure–activity correlations are discussed. Compared with carbon prepared without the assistance of MS, MSC-derived carbon prepared from the same precursor size (i.e. 0.09 cm) shows a higher specific capacitance (189 vs. 165 F g−1 at 0.2 A g−1) and enhanced high-rate capability (85% vs. 70% capacitance retention upon increasing the charge–discharge current density from 0.2 to 2.0 A g−1). Upon decreasing the precursor size from 2.0 to 0.09 cm, the specific capacitance increases from 142 to 189 F g−1, with the high-rate capacitance retention increasing from 70% to 85%. These improvements highlight the merits of the MSC method and engineering the precursor sizes for the preparation and modification of enhanced capacitive carbon, which is promising for practical applications. It is also found that the production yield of the MSC method decreases upon decreasing the precursor size. Therefore, the precursor size should be prudently tailored to ensure a balance between the capacitive properties and production yield.

Graphical abstract: One-step molten salt carbonization (MSC) of firwood biomass for capacitive carbon

Supplementary files

Article information

Article type
Paper
Submitted
05 Sep 2016
Accepted
31 Oct 2016
First published
01 Nov 2016

RSC Adv., 2016,6, 106485-106490

One-step molten salt carbonization (MSC) of firwood biomass for capacitive carbon

B. Lu, L. Hu, H. Yin, W. Xiao and D. Wang, RSC Adv., 2016, 6, 106485 DOI: 10.1039/C6RA22191B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements