Issue 115, 2016, Issue in Progress

Facile synthesis of the Basolite F300-like nanoscale Fe-BTC framework and its lithium storage properties

Abstract

The Fe-BTC material commercialized as Basolite F300 is one of the most studied MOFs due to its unique features and wide range of industrial applications. In this article, Basolite F300-like Fe-BTC MOF materials were prepared directly with the protonated carboxylated ligand, circumventing the use of an alkaline solution as in previous work, by selecting an appropriate iron source. Results from the detailed characterization indicate that the obtained Fe-BTC was very similar to the commercial counterpart and the one prepared under the alkaline conditions in terms of many physicochemical properties. Besides, the Fe-BTC reported herein was scaled down to the nano-regime to afford nanoscale metal–organic frameworks (nMOFs), which is advantageous for its potential applications. More importantly, the current interest in MOFs in the area of rechargeable batteries has driven us to investigate its electrochemical performance with respect to lithium storage. It was shown that the nanoscale Fe-BTC MOF exhibits an outstanding electrochemical performance with a high reversible capacity up to 1021 mA h g−1 after 100 cycles at a current density of 100 mA g−1 and capacities up to 436 and 408 mA h g−1 after 400 cycles at a higher current density of 500 and 1000 mA g−1, respectively. Our results on the Fe-BTC MOF highlight the potential for high power Li-ion batteries (LIBs) applications.

Graphical abstract: Facile synthesis of the Basolite F300-like nanoscale Fe-BTC framework and its lithium storage properties

Supplementary files

Article information

Article type
Paper
Submitted
12 Sep 2016
Accepted
28 Nov 2016
First published
02 Dec 2016

RSC Adv., 2016,6, 114483-114490

Facile synthesis of the Basolite F300-like nanoscale Fe-BTC framework and its lithium storage properties

X. Hu, X. Lou, C. Li, Y. Ning, Y. Liao, Q. Chen, E. S. Mananga, M. Shen and B. Hu, RSC Adv., 2016, 6, 114483 DOI: 10.1039/C6RA22738D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements