Efficient hydrogenation of dimethyl oxalate to ethylene glycol via nickel stabilized copper catalysts
Abstract
CuNi/SiO2 nanocatalysts with Ni-stabilized Cu nanoparticles of around 10 nm were synthesized. After H2 reduction, the catalysts with grain size of around 25 nm showed very high performance in the catalytic hydrogenation of dimethyl oxalate to ethylene glycol under mild reaction conditions. The composition and structure of these nanocatalysts were characterized. This study showed that Ni played a key role in stabilizing Cu against deactivation. To meet the requirements of industrial application, the optimal CuNi/SiO2 nanocatalyst was tested under continuous reaction for over 2000 hours. The conversion and product selectivity were maintained at 99% and above 95%, respectively.