Issue 1, 2016

High symmetry or low symmetry, that is the question – high performance Dy(iii) single-ion magnets by electrostatic potential design

Abstract

A series of mononuclear lanthanide Zn–Dy–Zn type single-molecule magnets (SMMs) were synthesized and magnetically characterized. The four molecules ([Zn2(L1)2DyCl3]·2H2O (1), [Zn2(L1)2Dy(MeOH)Br3]·3H2O (2), [Zn2(L1)2Dy(H2O)Br2]·[ZnBr4]0.5 (3) and [Zn2(L2)2DyCl3]·2H2O (4)) all display remarkable magnetic relaxation behavior with a relatively high energy barrier and hysteresis temperature, despite possessing a low local geometry symmetry of the center Dy(III) ions. Ab initio studies revealed that the symmetry of the charge distribution around the Dy(III) ion is the key factor to determine the relaxation of the SMMs. The four complexes orient their magnetic easy axes along the negative charge-dense direction of the first coordination sphere. The entire molecular magnetic anisotropy was therefore controlled by a single substituent atom in the hard plane which consists of five coordination atoms (perpendicular to the easy axis), and the lower charge distribution on this hard plane in combination with the nearly coplanarity of the five coordination atoms ultimately lead to the prominent magnetic slow relaxation. This offers an efficient and rational method to improve the dynamic magnetic relaxation of the mononuclear lanthanide SMMs that usually possess a low local geometry symmetry around the lanthanide(III) center.

Graphical abstract: High symmetry or low symmetry, that is the question – high performance Dy(iii) single-ion magnets by electrostatic potential design

Supplementary files

Article information

Article type
Edge Article
Submitted
12 Aug 2015
Accepted
09 Oct 2015
First published
09 Oct 2015
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2016,7, 684-691

Author version available

High symmetry or low symmetry, that is the question – high performance Dy(III) single-ion magnets by electrostatic potential design

W. Sun, P. Yan, S. Jiang, B. Wang, Y. Zhang, H. Li, P. Chen, Z. Wang and S. Gao, Chem. Sci., 2016, 7, 684 DOI: 10.1039/C5SC02986D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements