Issue 6, 2016

Switching charge-transfer characteristics from p-type to n-type through molecular “doping” (co-crystallization)

Abstract

Borrowing an idea from the silicon industry, where the charge-carrier's characteristics can be changed through heteroatom implantation, we believe that the charge transport nature of organic semiconductors can be switched through molecular “doping” (co-crystallization). Here, we report a novel molecule 2,7-di-tert-butyl-10,14-di(thiophen-2-yl)phenanthro[4,5-abc][1,2,5]thiadiazolo[3,4-i]phenazine (DTPTP), which originally is a p-type (0.3 cm2 V−1 s−1) compound, and can be switched to an n-type semiconductor (DTPTP2–TCNQ, 3 × 10−3 cm2 V−1 s−1 under air conditions) through tetracyanoquinodimethane (TCNQ) doping (co-crystallization). Single crystal X-ray studies revealed that TCNQ-doped DTPTP complexes (DTPTP2–TCNQ) adopt a dense one-dimensional (1D) mixed π–π stacking mode with a ratio of DTPTP and TCNQ of 2 : 1, while pure DTPTP molecules utilize a herringbone-packing pattern. Interestingly, theoretical analysis suggested that there is a quasi-2D electron transport network in this host–guest system. Our research results might provide a new strategy, to switch the charge transport characteristics of an original system by appropriate molecular “doping” (co-crystal engineering).

Graphical abstract: Switching charge-transfer characteristics from p-type to n-type through molecular “doping” (co-crystallization)

Supplementary files

Article information

Article type
Edge Article
Submitted
23 Dec 2015
Accepted
25 Feb 2016
First published
25 Feb 2016
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2016,7, 3851-3856

Author version available

Switching charge-transfer characteristics from p-type to n-type through molecular “doping” (co-crystallization)

J. Zhang, P. Gu, G. Long, R. Ganguly, Y. Li, N. Aratani, H. Yamada and Q. Zhang, Chem. Sci., 2016, 7, 3851 DOI: 10.1039/C5SC04954G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements