Issue 7, 2016

Superior upconversion fluorescence dopants for highly efficient deep-blue electroluminescent devices

Abstract

In this study, we revealed a new approach for the development of new triplet–triplet annihilation (TTA) materials with highly efficient deep-blue fluorescence via the incorporation of a styrylpyrene core and an electron-donating group. The resulting deep-blue emitters (PCzSP, DFASP, and DPASP) exhibit intramolecular charge transfer emissions with remarkably high emission quantum yields. The electroluminescent devices based on these three fluorophores as dopants using CBP as a host exhibit very high device efficiencies; in particular, the DPASP-doped device reveals an extremely high EQE of 12%, reaching the limit of a TTA-based device. The EL characteristics of DPASP-doped CBP-based devices at various doping concentrations (0–5%) suggest that the dopant DPASP is responsible for the TTA-type delayed fluorescence in the device; no delayed fluorescence was observed for the device using CBP as the host emitter. Moreover, when using DMPPP with ambipolar characteristics as the host, the deep-blue DPASP-doped device also gives outstanding performance with an EQE of nearly 11% with an extremely small efficiency roll-off, which was ascribed to the excellent charge balance in the emitting layer of the EL device. The TTA process of the SP-based dopants accounts significantly for the superior efficiencies of the EL devices.

Graphical abstract: Superior upconversion fluorescence dopants for highly efficient deep-blue electroluminescent devices

Associated articles

Supplementary files

Article information

Article type
Edge Article
Submitted
08 Jan 2016
Accepted
17 Apr 2016
First published
18 Apr 2016
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2016,7, 4044-4051

Superior upconversion fluorescence dopants for highly efficient deep-blue electroluminescent devices

Y. Chen, C. Lin, M. Huang, K. Hung, Y. Wu, W. Lin, R. Chen-Cheng, H. Lin and C. Cheng, Chem. Sci., 2016, 7, 4044 DOI: 10.1039/C6SC00100A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements