Issue 5, 2016

Nonlinear elasticity of disordered fiber networks

Abstract

Disordered biopolymer gels have striking mechanical properties including strong nonlinearities. In the case of athermal gels (such as collagen-I) the nonlinearity has long been associated with a crossover from a bending dominated to a stretching dominated regime of elasticity. The physics of this crossover is related to the existence of a central-force isostatic point and to the fact that for most gels the bending modulus is small. This crossover induces scaling behavior for the elastic moduli. In particular, for linear elasticity such a scaling law has been demonstrated [Broedersz et al. Nat. Phys., 2011 7, 983]. In this work we generalize the scaling to the nonlinear regime with a two-parameter scaling law involving three critical exponents. We test the scaling law numerically for two disordered lattice models, and find a good scaling collapse for the shear modulus in both the linear and nonlinear regimes. We compute all the critical exponents for the two lattice models and discuss the applicability of our results to real systems.

Graphical abstract: Nonlinear elasticity of disordered fiber networks

Article information

Article type
Paper
Submitted
27 Jul 2015
Accepted
21 Nov 2015
First published
23 Nov 2015

Soft Matter, 2016,12, 1419-1424

Author version available

Nonlinear elasticity of disordered fiber networks

J. Feng, H. Levine, X. Mao and L. M. Sander, Soft Matter, 2016, 12, 1419 DOI: 10.1039/C5SM01856K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements