Issue 4, 2016

Induced stabilization of columnar phases in binary mixtures of discotic liquid crystals

Abstract

Three discotic liquid-crystalline binary mixtures, characterized by their extent of bidispersity in molecular thickness, were investigated with molecular dynamics simulations. Each equimolar mixture contained A-type (thin) and B-type (thick) discogens. The temperature-dependence of the orientational order parameter reveals that A-type liquid samples produce ordered phases more readily, with the (hexagonal) columnar phase being the most structured variant. Moderately and strongly bidisperse mixtures produce globally-segregated samples for temperatures corresponding to ordered phases; the weakly bidisperse mixture displays microheterogeneities. Ordered phases in the B-type liquid are induced partially by the presence of the A-type fluid. In the moderately bidisperse mixture, order is induced through orientational frustration: a mixed prenematic-like phase precedes global segregation to yield nematic and columnar mesophases upon further cooling. In the strongly bidisperse mixture, order is induced less efficiently through a paranematic-like mechanism: a highly-ordered A-type fluid imparts order to B-type discogens found at the interface of a fully-segregated sample. This ordering effect permeates into the disordered B-type domain until nematic and columnar phases emerge upon further cooling. At sufficiently low temperatures, all samples investigated exhibit the (hexagonal) columnar mesophase.

Graphical abstract: Induced stabilization of columnar phases in binary mixtures of discotic liquid crystals

Article information

Article type
Paper
Submitted
06 Aug 2015
Accepted
10 Nov 2015
First published
18 Nov 2015

Soft Matter, 2016,12, 1295-1312

Author version available

Induced stabilization of columnar phases in binary mixtures of discotic liquid crystals

O. Cienega-Cacerez, C. García-Alcántara, J. A. Moreno-Razo, E. Díaz-Herrera and E. J. Sambriski, Soft Matter, 2016, 12, 1295 DOI: 10.1039/C5SM01959A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements