Issue 3, 2016

Understanding geometric instabilities in thin films via a multi-layer model

Abstract

When a thin stiff film adhered to a compliant substrate is subject to compressive stresses, the film will experience a geometric instability and buckle out of plane. For high film/substrate stiffness ratios with relatively low levels of strain, the primary mode of instability will either be wrinkling or buckling delamination depending on the material and geometric properties of the system. Previous works approach these systems by treating the film and substrate as homogenous layers, either consistently perfectly attached, or perfectly unattached at interfacial flaws. However, this approach neglects systems where the film and substrate are uniformly weakly attached or where interfacial layers due to surface modifications in either the film or substrate are present. Here we demonstrate a method for accounting for these additional thin surface layers via an analytical solution verified by numerical results. The main outcome of this work is an improved understanding of how these layers influence global behavior. We demonstrate the utility of our model with applications ranging from buckling based metrology in ultrathin films, to an improved understanding of the formation of a novel surface in carbon nanotube bio-interface films. Moving forward, this model can be used to interpret experimental results, particularly for systems which deviate from traditional behavior, and aid in the evaluation and design of future film/substrate systems.

Graphical abstract: Understanding geometric instabilities in thin films via a multi-layer model

Article information

Article type
Paper
Submitted
20 Aug 2015
Accepted
28 Oct 2015
First published
29 Oct 2015

Soft Matter, 2016,12, 806-816

Author version available

Understanding geometric instabilities in thin films via a multi-layer model

E. Lejeune, A. Javili and C. Linder, Soft Matter, 2016, 12, 806 DOI: 10.1039/C5SM02082D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements