Issue 17, 2016

Interplay between flow and diffusion in capillary alginate hydrogels

Abstract

Alginate gels with naturally occurring macroscopic capillaries have been used as a model system to study the interplay between laminar flow and diffusion of nanometer-sized solutes in real time. Calcium alginate gels that contain homogeneously distributed parallel-aligned capillary structures were formed by external addition of crosslinking ions to an alginate sol. The effects of different flow rates (0, 1, 10, 50 and 100 μl min−1) and three different probes (fluorescein, 10 kDa and 500 kDa fluorescein isothiocyanate-dextran) on the diffusion rates of the solutes across the capillary wall and in the bulk gel in between the capillaries were investigated using confocal laser scanning microscopy. The flow in the capillaries was produced using a syringe pump that was connected to the capillaries via a tube. Transmission electron microscopy revealed an open aggregated structure close to the capillary wall, followed by an aligned network layer and the isotropic network of the bulk gel. The most pronounced effect was observed for the 1 nm-diameter fluorescein probe, for which an increase in flow rate increased the mobility of the probe in the gel. Fluorescence recovery after photobleaching confirmed increased mobility close to the channel, with increasing flow rate. Mobility maps derived using raster image correlation spectroscopy showed that the layer with the lowest mobility corresponded to the anisotropic layer of ordered network chains. The combination of microscopy techniques used in the present study elucidates the flow and diffusion behaviors visually, qualitatively and quantitatively, and represents a promising tool for future studies of mass transport in non-equilibrium systems.

Graphical abstract: Interplay between flow and diffusion in capillary alginate hydrogels

Article information

Article type
Paper
Submitted
03 Feb 2016
Accepted
22 Mar 2016
First published
22 Mar 2016

Soft Matter, 2016,12, 3897-3907

Interplay between flow and diffusion in capillary alginate hydrogels

E. Schuster, K. Sott, A. Ström, A. Altskär, N. Smisdom, T. Gebäck, N. Lorén and A. Hermansson, Soft Matter, 2016, 12, 3897 DOI: 10.1039/C6SM00294C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements