Thermoresponsive physical hydrogels of poly(lactic acid)/poly(ethylene glycol) stereoblock copolymers tuned by stereostructure and hydrophobic block sequence†
Abstract
CBABC-type poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG) pentablock copolymers composed of a central PEG block (A) and enantiomeric poly(L-lactic acid) (PLLA, B), poly(D-lactic acid) (PDLA, C) blocks were synthesized. Such pentablock copolymers form physical hydrogels at high concentrations in an aqueous solution, which stem from the aggregation and physical bridging of copolymer micelles. These gels are thermoresponsive and turn into sols upon heating. Physical gelation, gel-to-sol transition, crystalline state, microstructure, rheological behavior, biodegradation, and drug release behavior of PLA/PEG pentablock copolymers and their gels were investigated; they were also compared with PLA–PEG–PLA triblock copolymers containing the isotactic PLLA or atactic poly(D,L-lactide) (PDLLA) endblocks and PLLA–PEG–PLLA/PDLA–PEG–PDLA enantiomeric mixtures. PLA hydrophobic domains in pentablock copolymer gels changed from a homocrystalline to stereocomplexed structure as the PLLA/PDLA block length ratio approached 1/1. The gel of symmetric pentablock copolymer exhibited a wider gelation region, higher gel-to-sol transition temperature, higher hydrophobic domain crystallinity, larger intermicellar distance, higher storage modulus, and slower degradation and drug release rate compared to those of the asymmetric PLA/PEG pentablock copolymers or triblock copolymers. SAXS results indicated that the PLLA/PDLA blocks stereocomplexation in pentablock copolymers facilitated the intermicellar aggregation and bridging. Cylindrical ordered structures were observed in all the gels formed from the PLA/PEG pentablock and triblock copolymers. The stereocomplexation degree and intermicellar distance of the pentablock copolymer gels increased with heating.