Issue 31, 2016

Soft hydrated sliding interfaces as complex fluids

Abstract

Hydrogel surfaces are biomimics for sensing and mobility systems in the body such as the eyes and large joints due to their important characteristics of flexibility, permeability, and integrated aqueous component. Recent studies have shown polymer concentration gradients resulting in a less dense region in the top micrometers of the surface. Under shear, this gradient is hypothesized to drive lubrication behavior due to its rheological similarity to a semi-dilute polymer solution. In this work we map 3 distinct lubricating regimes between a polyacrylamide surface and an aluminum annulus using stepped-velocity tribo-rheometry over 5 decades of sliding speed in increasing and decreasing steps. These regimes, characterized by weakly or strongly time-dependent response and thixotropy-like hysteresis, provide the skeleton of a lubrication curve for hydrogel-against-hard material interfaces and support hypotheses of polymer mechanics-driven lubrication. Tribo-rheometry is particularly suited to uncover the lubrication mechanisms of complex interfaces such as are formed with hydrated hydrogel surfaces and biological surfaces.

Graphical abstract: Soft hydrated sliding interfaces as complex fluids

Article information

Article type
Paper
Submitted
12 Mar 2016
Accepted
11 Jul 2016
First published
11 Jul 2016

Soft Matter, 2016,12, 6536-6546

Soft hydrated sliding interfaces as complex fluids

J. Kim and A. C. Dunn, Soft Matter, 2016, 12, 6536 DOI: 10.1039/C6SM00623J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements