Issue 29, 2016

Cell-sized liposome doublets reveal active tension build-up driven by acto-myosin dynamics

Abstract

Cells modulate their shape to fulfill specific functions, mediated by the cell cortex, a thin actin shell bound to the plasma membrane. Myosin motor activity, together with actin dynamics, contributes to cortical tension. Here, we examine the individual contributions of actin polymerization and myosin activity to tension increase with a non-invasive method. Cell-sized liposome doublets are covered with either a stabilized actin cortex of preformed actin filaments, or a dynamic branched actin network polymerizing at the membrane. The addition of myosin II minifilaments in both cases triggers a change in doublet shape that is unambiguously related to a tension increase. Preformed actin filaments allow us to evaluate the effect of myosin alone while, with dynamic actin cortices, we examine the synergy of actin polymerization and myosin motors in driving shape changes. Our assay paves the way for a quantification of tension changes triggered by various actin-associated proteins in a cell-sized system.

Graphical abstract: Cell-sized liposome doublets reveal active tension build-up driven by acto-myosin dynamics

Supplementary files

Article information

Article type
Paper
Submitted
11 Apr 2016
Accepted
28 Jun 2016
First published
29 Jun 2016

Soft Matter, 2016,12, 6223-6231

Author version available

Cell-sized liposome doublets reveal active tension build-up driven by acto-myosin dynamics

V. Caorsi, J. Lemière, C. Campillo, M. Bussonnier, J. Manzi, T. Betz, J. Plastino, K. Carvalho and C. Sykes, Soft Matter, 2016, 12, 6223 DOI: 10.1039/C6SM00856A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements