Unusual phase separation and rheological behavior of poly(ethylene oxide)/ionic liquid mixtures with specific interactions
Abstract
The phase separation behavior of poly(ethylene oxide) (PEO) in ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) was investigated by rheological, optical microscopy, FT-IR and DSC measurements. It is demonstrated that specific interactions, particularly the hydrogen bonding between PEO and the ionic liquids as evidenced by FT-IR, in which a subtle but apparent absorption peak shift near the phase transition appears, account for the unusual low critical solution temperature (LCST) phase separation. Unlike the typical trend in which the storage modulus G′ simply increases with temperature near the phase boundary for polymer blends without specific interaction, in our study, a novel “V-shaped” rheological response is observed, namely a dip in G′ followed by an upturn, especially at low PEO concentration (<50 wt%). The magnitude of the “V” dip has heating rate and frequency dependences, while Tr (the phase transition temperature) is almost unchanged with heating rate and frequency. Upon increasing the alkyl chain length on the imidazolium ring from an ethyl to a butyl, the “V-shape” becomes more prominent and shifts to higher temperature, which is consistent with the results of FT-IR and DSC, evidently due to the stronger hydrogen bonding interaction between PEO and [BMIM][BF4] than [EMIM][BF4]. This unusual “V” dip might be tentatively ascribed to the coupling effects of the breaking of the “hydrogen bonding cage” formed between PEO chains and IL molecules and dissolution of the heterogeneous clusters as verified by FT-IR and TEM, respectively, and the following upturn is dominated by the interface formation upon phase separation.