Formation kinetics of particulate films in directional drying of a colloidal suspension
Abstract
We observed the kinetics of formation of colloidal films through directional drying with a pinned drying interface. The volume fraction of particles accumulated at the pinned drying interface increased in two stages: it rapidly increased in the initial stage of drying and then slowly increased. The final filling factor of the dried films decreased with increasing drying flux. We found a threshold drying flux for the formation of colloidal films below which uneven films are formed at the drying interface. This threshold flux is well explained by the competition between transport of particles by flow and transport by diffusion. We also found a minimum thickness for the formation of a packed layer of particles. The formation kinetics of a packed layer of particles due to drying was discussed.