Issue 43, 2016

Distinguishing between heating power and hyperthermic cell-treatment efficacy in magnetic fluid hyperthermia

Abstract

In the magnetic fluid hyperthermia (MFH) research field, it is usually assumed that achieving a uniform temperature enhancement (ΔT) of the entire tumour is a key-point for treatment. However, various experimental works reported successful cell apoptosis via MFH without a noticeable ΔT of the system. A possible explanation of the success of these negligible-ΔT experiments is that a local ΔT restricted to the particle nanoenvironment (i.e. with no significant effect on the global temperature T) could be enough to trigger cell death. Shedding light on such a possibility requires accurate knowledge of heat dissipation at the local level in relation to the usually investigated global (average) one. Since size polydispersity is inherent to all synthesis techniques and the heat released is proportional to the particle size, heat dissipation spots with different performances – and thus different effects on the cells – will likely exist in every sample. In this work we aim for a double objective: (1) to emphasize the necessity to distinguish between the total dissipated heat and hyperthermia effectiveness, and (2) to suggest a theoretical approach on how to select, for a given size polydispersity, a more adequate average size so that most of the particles dissipate within a desired heating power range. The results are reported in terms of Fe3O4 nanoparticles as a representative example.

Graphical abstract: Distinguishing between heating power and hyperthermic cell-treatment efficacy in magnetic fluid hyperthermia

Article information

Article type
Communication
Submitted
18 Aug 2016
Accepted
06 Oct 2016
First published
07 Oct 2016

Soft Matter, 2016,12, 8815-8818

Distinguishing between heating power and hyperthermic cell-treatment efficacy in magnetic fluid hyperthermia

C. Munoz-Menendez, I. Conde-Leboran, D. Serantes, R. Chantrell, O. Chubykalo-Fesenko and D. Baldomir, Soft Matter, 2016, 12, 8815 DOI: 10.1039/C6SM01910B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements