Issue 5, 2016

Towards sustainable solid-state supercapacitors: electroactive conducting polymers combined with biohydrogels

Abstract

Solid-state organic electrochemical supercapacitors (OESCs) have been fabricated using poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes, a biohydrogel as electrolyte system, and polyaniline fibers as redox additive. The effectivity of sodium alginate, κ-carrageenan, chitosan and gelatin hydrogels as electrolytic media has been evaluated considering different criteria. Results indicate that κ-carrageenan-based hydrogel is the most suitable to perform as electrolyte due to the appropriate combination of properties: mechanical stability, ease of preparation, lack of water leaking, and good medium for the electrochemical response of PEDOT electrodes. Cyclic voltammetry and galvanostatic charge–discharge assays indicate that OESCs based on PEDOT electrodes and κ-carrageenan hydrogel as electrolyte exhibits a good supercapacitor response in terms of specific capacitance, cycling stability, small leakage current and low self-discharging tendency. On the basis of these good properties, four OESC devices were assembled in series and used to power a red LED, confirming that, in addition to advantageous characteristics (e.g. elimination of liquid leaking and enhancement of the device compactness), the designed biohydrogel-containing OESC exhibits potential for practical applications. On the other hand, preliminary assays have been performed loading the κ-carrageenan hydrogel with polyaniline nanofibers, which act as a redox additive. OESC devices prepared using such loaded biohydrogel have been found to be very promising and, therefore, future work is oriented towards the improvement of their design.

Graphical abstract: Towards sustainable solid-state supercapacitors: electroactive conducting polymers combined with biohydrogels

Supplementary files

Article information

Article type
Paper
Submitted
28 Oct 2015
Accepted
04 Jan 2016
First published
04 Jan 2016
This article is Open Access
Creative Commons BY license

J. Mater. Chem. A, 2016,4, 1792-1805

Towards sustainable solid-state supercapacitors: electroactive conducting polymers combined with biohydrogels

M. M. Pérez-Madrigal, F. Estrany, E. Armelin, D. D. Díaz and C. Alemán, J. Mater. Chem. A, 2016, 4, 1792 DOI: 10.1039/C5TA08680A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements