Issue 3, 2016

Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%

Abstract

Transition metal ion (especially Mn2+) doping has been proven to be an effective approach to modify the intrinsic photo-electronic properties of semiconductor quantum dots (QDs). However, previous works to directly grow Mn doped QDs on TiO2 film electrodes at room temperature resulted in the potential of the Mn dopant not being fully demonstrated in quantum dot sensitized solar cells (QDSCs). Herein, Mn doped CdSe0.65Te0.35 QDs (simplified as Mn : QD) were pre-synthesized via a “growth doping” strategy at high temperature. A QD-sensitized photoanode with the configuration TiO2/Mn : QD/Mn : ZnS/SiO2 was prepared and corresponding cell devices were constructed using Cu2S/brass counter electrodes and polysulfide electrolyte, together with reference cells with the photoanode configurations TiO2/Mn : QD/ZnS/SiO2, TiO2/QD/Mn : ZnS/SiO2, and TiO2/QD/ZnS/SiO2. The photovoltaic performance results indicate that TiO2/Mn : QD/Mn : ZnS/SiO2 cells exhibit the best photovoltaic performance among all the studied cell devices with a power conversion efficiency (PCE) for the champion cell of 9.40% (Jsc = 20.87 mA cm−2, Voc = 0.688 V, FF = 0.655) under AM 1.5 G one full sun illumination, which is among the best results for QDSCs. The open circuit voltage decay (OCVD), impedance spectroscopy (IS) and transient absorption (TA) measurements confirm that the Mn2+ dopant can suppress charge recombination and improve the photovoltage and PCE of the resulting cells.

Graphical abstract: Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%

Supplementary files

Article information

Article type
Paper
Submitted
17 Nov 2015
Accepted
01 Dec 2015
First published
02 Dec 2015

J. Mater. Chem. A, 2016,4, 877-886

Author version available

Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%

J. Wang, Y. Li, Q. Shen, T. Izuishi, Z. Pan, K. Zhao and X. Zhong, J. Mater. Chem. A, 2016, 4, 877 DOI: 10.1039/C5TA09306F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements