Oxygen vacancy formation characteristics in the bulk and across different surface terminations of La(1−x)SrxFe(1−y)CoyO(3−δ) perovskite oxides for CO2 conversion†
Abstract
Density functional theory (DFT) based investigation of two parameters of prime interest – oxygen vacancy and surface terminations along (100) and (110) planes – has been conducted for La(1−x)SrxFe(1−y)CoyO(3−δ) perovskite oxides in view of their application towards thermochemical carbon dioxide conversion reactions. The bulk oxygen vacancy formation energies for these mixed perovskite oxides are found to increase with increasing lanthanum and iron contents in the ‘A’ site and ‘B’ site, respectively. Surface terminations along (100) and (110) crystal planes are studied to probe their stability and their capabilities to accommodate surface oxygen vacancies. Amongst the various terminations, the oxygen-rich (110) surface and strontium-rich (100) surface are the most stable, while transition metal-rich terminations along (100) revealed preference towards the production of oxygen vacancies. The carbon dioxide adsorption strength, a key descriptor for CO2 conversion reactions, is found to increase on oxygen vacant surfaces thus establishing the importance of oxygen vacancies in CO2 conversion reactions. Amongst all the surface terminations, the lanthanum-oxygen terminated surface exhibited the strongest CO2 adsorption strength. The theoretical prediction of the oxygen vacancy trends and the stability of the samples were corroborated by the temperature-programmed reduction and oxidation reactions and in situ XRD crystallography.
- This article is part of the themed collection: 2016 Journal of Materials Chemistry A HOT Papers