Issue 11, 2016

Decoration of the inert basal plane of defect-rich MoS2 with Pd atoms for achieving Pt-similar HER activity

Abstract

Outstanding hydrogen evolution reaction (HER) activity and stability are highly desired for transition metal dichalcogenide (TMD)-based catalysts as Pt substitutes. Here, we theoretically calculated and experimentally showed that adsorbing Pd atoms on the basal plane of defect-rich (DR) MoS2 will effectively modulate the surface electronic state of MoS2 while retaining its active sites, which greatly enhanced the HER activity. Three decoration strategies were used to implement this design: direct epitaxial growth, assembling spherical nanoparticles and assembling Pd nanodisks (NDs). The results showed that only Pd NDs are able to be site-specifically decorated on the basal plane of DR-MoS2 through lamellar-counterpart-induced van der Waals pre-combination and covalent bonding. This Pd ND/DR-MoS2 heterostructure exhibits exceptional Pt-similar HER properties with a low onset-overpotential (40 mV), small Tafel slope (41 mV dec−1), extremely high exchange current density (426.58 μA cm−2) and robust HER durability. These results demonstrate a novel modification strategy by a lamellar metallic nanostructure for designing excellent layered TMD-based HER catalysts.

Graphical abstract: Decoration of the inert basal plane of defect-rich MoS2 with Pd atoms for achieving Pt-similar HER activity

Supplementary files

Article information

Article type
Paper
Submitted
17 Dec 2015
Accepted
15 Jan 2016
First published
20 Jan 2016

J. Mater. Chem. A, 2016,4, 4025-4031

Author version available

Decoration of the inert basal plane of defect-rich MoS2 with Pd atoms for achieving Pt-similar HER activity

K. Qi, S. Yu, Q. Wang, W. Zhang, J. Fan, W. Zheng and X. Cui, J. Mater. Chem. A, 2016, 4, 4025 DOI: 10.1039/C5TA10337A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements