A novel photoanode with high flexibility for fiber-shaped dye sensitized solar cells†
Abstract
A completely flexible fiber-shaped dye sensitized solar cell has been truly realized for the first time, due to a novel photoanode with a TiO2 micron-cone-nanowire array structure prepared by a simple two-step process. The TiO2 micron-cone array, made using an electrochemical method, is used as a frame for a novel photoanode, with its roots sinking deep down into a Ti wire substrate. The TiO2 nanowire array is coated onto the TiO2 micron-cone surface by a hydrothermal reaction to form a dye-adsorption layer to the enhance power conversion efficiency of the novel device. With a high dye-adsorption capacity and strong combination between the TiO2 micron-cone and Ti substrate, the minimum bending radius of the photoanode could reach 0.45 mm, and 96.6% retention of the initial conversion efficiency was obtained after bending 100 times.
- This article is part of the themed collection: 2016 Journal of Materials Chemistry A HOT Papers