Issue 11, 2016

Thermoelectric properties of Bi-based Zintl compounds Ca1−xYbxMg2Bi2

Abstract

Bi-based Zintl compounds, Ca1−xYbxMg2Bi2 with the structure of CaAl2Si2, have been successfully prepared by mechanical alloying followed by hot pressing. We found that the electrical conductivity, Seebeck coefficient, carrier concentration, and thermal conductivity can be adjusted by changing the Yb concentration. All Ca1−xYbxMg2Bi2 samples have low carrier concentrations (∼2.4 to 7.2 × 1018 cm−3) and high Hall mobility (∼119 to 153 cm2 V−1 s−1) near room temperature. The partial substitution of Ca with Yb causes structural disorders, which lowers the thermal conductivity. The highest figure of merit of ∼1.0 is observed in Ca0.5Yb0.5Mg2Bi2, and ∼0.8 in the unsubstituted CaMg2Bi2 and YbMg2Bi2. A small amount of free Bi was found in all the samples except YbMg2Bi2. By reducing the initial Bi concentration, we succeeded in obtaining phase pure samples in all compositions, which resulted in a much better thermoelectric performance, especially much higher (ZT)eng and a conversion efficiency near 11%. Such a high efficiency makes this material competitive with half-Heuslers and skutterudites.

Graphical abstract: Thermoelectric properties of Bi-based Zintl compounds Ca1−xYbxMg2Bi2

Supplementary files

Article information

Article type
Paper
Submitted
18 Jan 2016
Accepted
12 Feb 2016
First published
12 Feb 2016

J. Mater. Chem. A, 2016,4, 4312-4320

Thermoelectric properties of Bi-based Zintl compounds Ca1−xYbxMg2Bi2

J. Shuai, Z. Liu, H. S. Kim, Y. Wang, J. Mao, R. He, J. Sui and Z. Ren, J. Mater. Chem. A, 2016, 4, 4312 DOI: 10.1039/C6TA00507A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements